Modal生态系统#
本页面介绍了如何在LangChain中使用Modal生态系统。分为两部分:安装和设置,以及对特定Modal包装器的引用。
安装和设置#
-
使用
pip install modal-client
安装 -
运行
modal token new
定义你的Modal函数和Webhooks#
你必须包含一个提示。有一个严格的响应结构。
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def my_webhook(item: Item):
return {"prompt": my_function.call(item.prompt)}
使用GPT2的示例:
from pydantic import BaseModel
import modal
stub = modal.Stub("example-get-started")
volume = modal.SharedVolume().persist("gpt2_model_vol")
CACHE_PATH = "/root/model_cache"
@stub.function(
gpu="any",
image=modal.Image.debian_slim().pip_install(
"tokenizers", "transformers", "torch", "accelerate"
),
shared_volumes={CACHE_PATH: volume},
retries=3,
)
def run_gpt2(text: str):
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
encoded_input = tokenizer(text, return_tensors='pt').input_ids
output = model.generate(encoded_input, max_length=50, do_sample=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def get_text(item: Item):
return {"prompt": run_gpt2.call(item.prompt)}
包装器#
LLM#
There exists an Modal LLM wrapper, which you can access with
from langchain.llms import Modal